Imputing missing genotypes: effects of methods and patterns of missing data
نویسندگان
چکیده
منابع مشابه
Imputing missing genotypes: effects of methods and patterns of missing data
Costs of high-throughput genotyping have decreased to the point where it appears economically feasible to use molecular genetic marker information in applied breeding programs. Some practical questions remain to be addressed about how best to deal with missing data in the resulting genotype datasets, to minimize the impact of the missing data on the accuracy of breeding value prediction. Data c...
متن کاملThe Effects of Imputing Missing Data on Ensemble Temperature Forecasts
A major issue for developing post-processing methods for NWP forecasting systems is the need to obtain complete training datasets. Without a complete dataset, it can become difficult, if not impossible, to train and verify statistical post-processing techniques, including ensemble consensus forecasting schemes. In addition, when ensemble forecast data are missing, the real-time use of the conse...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملImputing missing genotypes with weighted k nearest neighbors.
Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to im...
متن کاملThe roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases
Almost universally, forest inventory and monitoring databases are incomplete, ranging from missing data for only a few records and a few variables, common for small land areas, to missing data for many observations and many variables, common for large land areas. For a wide variety of applications, nearest neighbor (NN) imputation methods have been developed to fill in observations of variables...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Proceedings
سال: 2011
ISSN: 1753-6561
DOI: 10.1186/1753-6561-5-s7-p61